Welcome

13.4.13

Fistum


BAB II

PEMBAHASAN

A.  Fungsi air pada tumbuhan

1.      Penyusun tubuh tanaman (70%-90%)
2.      Pelarut dan medium reaksi biokimia
3.      Medium transpor senyawa
4.      Memberikan turgor bagi sel (penting untuk pembelahan sel dan pembesaran sel)
5.      Bahan baku fotosintesis
6.      Menjaga suhu tanaman supaya konstan

B.  Proses Penyerapan Air pada Tumbuhan

Tumbuhan membutuhkan air sepanjang hidupnya. Setelah diserap akar, air digunakan dalam semua reaksi kimia, mengangkut zat hara, membangun turgor, dan akhirnya keluar dari daun sebagai uap atau air. Tumbuhan mempunyai sistem pengangkutan air dan garam mineral yang diperoleh dari tanah agar air tetap tersedia. Pada tumbuhan tingkat tinggi terdapat dua macam cara pengangkutan air dan garam mineral yang diperoleh dari tanah, yaitu ekstravaskular dan intravaskular.
Pengangkutan ekstravaskular adalah pengangkutan di luar berkas pembuluh. Pengangkutan ini bergerak dari permukaan akar menuju ke bagian-bagian yang letaknya lebih dalam dan menuju ke berkas pembuluh. Sementara itu, pengangkutan intravaskular adalah pengangkutan melalui berkas pembuluh dari akar menuju bagian atas tumbuhan.
1. Proses Pengangkutan Ekstravaskular
Pada pengangkutan ini, air akan masuk melalui sel epidermis akar kemudian bergerak di antara sel-sel korteks. Air harus melewati sitoplasma sel-sel endodermis untuk memasuki silinder pusat (stele). Setelah sampai di stele, air akan bergerak bebas di antara sel-sel. Cara transportasi dalam pengangkutan air dan mineral secara ekstravaskular ada dua macam, yaitu apoplas dan simplas. Perhatikan Gambar dibawah ini.

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEik7ZTNF3Lwm-_BNisCauzF4e2qHvb-hM6PYF1ZvPzSvFaXcgC8m7i45Lk1IfzAkGR1QaFrJJ_5P9tOStogMTXvE-Xzxh-3CsipmSh6_jm6oPBe8ZyU7kC1mssGPgdkqnoXxLPo8WyKtdo/s1600/Pengangkutan+ekstravasikuler+pada+tumbuhan.gif
Gambar 2.13
Pengangkutan ekstravaskular

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgRfjNigHU4m5ShiYn8jroqZue8PJLi0s7KGaHgfxhWf8j77XPhOCE9Md0x5I5OMqi7-UnbZsGf4OK_7un0Hrpz6x4NHrKGBD0IendgnSrTkkSqEXmrO6FfFEoAWfOHefgRI9Li4S2cXK0/s1600/simplas+apoplas.gif
Gambar 2.14
Pengangkutan ekstravaskular
secara simplas (a) dan apoplas (b)

Transportasi apoplas adalah menyusupnya air tanah secara difusi bebas atau transpor pasif melalui semua bagian tidak hidup dari tumbuhan, misalnya dinding sel dan ruang-ruang antarsel. Transportasi apoplas tidak dapat terjadi saat melewati endodermis sebab dalam sel-sel endodermis terdapat pita kaspari yang menghalangi air masuk ke dalam xilem. Pita kaspari ini terbentuk dari zat suberin (gabus) dan lignin. Oleh karena itu,apoplas dapat terjadi di semua bagian kecuali endodermis. Air yang menuju endodermis ditranspor secara simplas melalui sel peresap.

Kebalikan dari transportasi apoplas adalah transportasi simplas. Transportasi simplas yaitu bergeraknya air tanah dan zat terlarut melalui bagian hidup dari sel tumbuhan. Pada sistem simplas ini perpindahan terjadi secara osmosis dan transpor aktif melalui plasmodesmata. Transportasi simplas dimulai dari sel-sel rambut akar ke sel-sel parenkim korteks yang berlapis-lapis, sel-sel endodermis, sel-sel perisikel, dan akhirnya ke berkas pembuluh kayu atau xilem.

Pengangkutan mineral melalui transpor aktif. Mineral mampu masuk ke dalam akar karena melawan gradien konsentrasi, yaitu dari daerah berkonsentrasi rendah ke daerah berkonsentrasi tinggi.

2. Proses Pengangkutan Intravaskular
Pengangkutan intravaskular adalah pengangkutan melalui berkas pembuluh (xilem) dari akar menuju bagian atas tumbuhan. Pengangkutan air dan mineral dimulai dari xilem akar ke xilem batang menuju xilem tangkai daun dan ke xilem tulang daun. Pada tulang daun terdapat ikatan pembuluh. Air dari xilem tulang daun ini masuk ke sel-sel bunga karang pada mesofil. Setelah mencapai sel-sel bunga karang, air dan garam-garam mineral disimpan untuk digunakan dalam proses fotosintesis dan transportasi. Transportasi pada trakea lebih cepat daripada transportasi pada trakeida.

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhBP0xslvn01LmaHqJLdKELbWl4RmwUucNxSV1bxGJrRjPk9Q3_uf9wve49WBvZmJ-v43CMtX0tlrTiCiY4KNUhRwBG4QkZSwgPEN3o-V95oY-gsynj41U4k_Zi2sOTqjhCC41Rq1n6Bt4/s320/Pengangkutan+intravaskuler.gif
Gambar. Pengangkutan air dan garam mineral secara intravaskuler

Ada beberapa jenis tumbuhan yang tidak mempunyai trakea sehingga trakeida merupakan satu-satunya saluran pengangkutan air tanah. Tumbuhan yang tidak mempunyai trakea misalnya pada tumbuhan paku dan tumbuhan berbiji terbuka. Pengangkutan air dan mineral dari bawah ke atas tubuh tumbuhan oleh xilem mengikuti beberapa teori sebagai berikut.



a. Teori vital
Teori vital menyatakan bahwa perjalanan air dari akar menuju daun dapat terlaksana karena adanya sel-sel hidup, misalnya sel-sel parenkim dan jari-jari empulur di sekitar xilem.
b. Teori Dixon Joly
Teori Dixon Joly menyatakan bahwa naiknya air ke atas karena tarikan dari atas, yaitu ketika daun melakukan transpirasi. Air selalu bergerak dari daerah basah ke daerah kering.
c. Teori tekanan akar
Teori tekanan akar menyatakan bahwa air dan mineral naik ke atas karena adanya tekanan akar. Tekanan akar ini terjadi karena perbedaan konsentrasi air dalam air tanah dengan cairan pada saluran xilem. Tekanan akar paling tinggi terjadi pada malam hari dan dapat menyebabkan merembesnya tetes-tetes air dari daun tumbuhan (gutasi). Perhatikan Gambar 2.16.

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEib9Whbd1D-NbPAmgGLOkbR567My4adL-JZVUMHPFt4x9CQKsVIW2y1K3akDWRVNRT5z3CjjQL3YAHF9apDN8m0iR87zetYVGxOoJ8R8eSJqHjvmcs9Z2YNJu9MQiFiigfqXqvD3FEs5bM/s1600/Gutasi+pada+tepi+daun.gif

Pada dasarnya, pengangkutan air dan mineral dari tanah ke dalam tumbuhan melibatkan tiga proses sebagai berikut.
a. Proses osmosis.
b. Proses difusi.
c. Proses transpor aktif.
Dari uraian di atas dapat disimpulkan bahwa pengangkutan air dan mineral dari dalam tanah ke tubuh tumbuhan melalui lintasan tertentu.
Air yang diangkut xilem digunakan untuk fotosintesis dan sebagian mengalami transpirasi. Laju transpirasi dipengaruhi oleh keadaan lingkungan, misalnya kelembapan, suhu, cahaya, angin, dan kandungan air tanah.
Kelembapan berpengaruh terhadap laju transpirasi. Jika kelembapan udara lingkungan di sekitar tumbuhan tinggi maka difusi air dalam ruang udara pada tumbuhan akan berlangsung lambat. Sebaliknya, jika kelembapan di sekitar tumbuhan rendah, difusi air dalam ruang udara pada tumbuhan berlangsung cepat.
Jika suhu lingkungan semakin tinggi maka laju transpirasi juga semakin cepat. Demikian juga jika intensitas cahaya meningkat maka transpirasi tumbuhan meningkat.
Angin cenderung meningkatkan laju transpirasi karena angin dapat menyapu uap air yang terkumpul di dekat permukaan. Sementara itu, kandungan air tanah juga dapat mempengaruhi laju transpirasi. Jika kandungan air tanah cukup banyak sehingga potensial air tanah lebih tinggi daripada di dalam sel-sel tumbuhan maka aliran air di dalam pembuluh kayu dan laju transpirasi meningkat.
Selain pengangkutan air dan mineral dari tanah, pada tumbuhan juga terjadi pengangkutan hasil-hasil fotosintesis. Zat makanan hasil fotosintesis ditimbun sementara pada daun. Namun, banyak tumbuhan yang mempunyai organ penyimpanan misalnya umbi akar.
Selanjutnya, zat makanan ini mengalami pengangkutan ke bagian bagian tumbuhan lain melalui pembuluh tapis (floem). Jadi, pembuluh tapis berfungsi mengangkut hasil fotosintesis secara dua arah, yaitu dari daun ke tempat penyimpanan makanan cadangan dan ke bagian bagian yang aktif tumbuh.

C.  Sifat Air

Air memiliki sifat-sifat fisika yang penting bagi kehidpan tumbuhan maupun semua organisme hidup, sifat-sifat tersebut antara lain:
Titik didih air  jauh lebih tinggi dibanding jenis cairan yang lain dan merupakan cairan yang paling umum. Sehingga air dapat menyerap sejumlah besar energi tanpa banyak menaikkan suhu, sehingga tubuh organisme menjadi lebih stabil dan metabolismenya akan stabil pula.
Air mempunyai titik densitas maksimum pada 4oc. Hal ini yang menyebabkan kenapa air jarang membeku di dalam lautan atau danau . Sehingga, organisme dapat hidup di dalamnya.
Molekul air mempunyai kemampuan untuk berikatan dengan molekul lain ( adhesi, sedangkan kemampuan molekul tersebut untuk saling berikatan, disebut kohesi. Hal ini sangat membantu dalam proses pengangkutan air di dalam tubuh tumbuhan.
Air memiliki panas penguapan ( heats of vaporization ). Cukup tinggi, sekitar 540 cal gm-1. Angka tersebut sangat membantu dalam pemeliharaan temperature organisme.
Air  tegangan muka sangat tinggi. Sehingga air ini boleh naik didalam suatu kapiler sampai ketinggian sekitar 120cm, dan sangat  bermanfaat bagi tumbuhan, dimana memungkinkan air untuk pindah atau bergerak secara ekstensif  antar ruang partikel dan dalam  dinding sel tumbuhan.
Air mempunyai kemampuan yang tinggi untuk mentransmisikan cahaya, sehingga membantu tumbuhan di dalam fotosintesis terutama pada tumbuhan yang berada di dalam air. Selain itu dapat memampukan cahaya untuk menembus dan menjangkau jaringan daun-daun yang lebih dalam.
Air berbentuk cair dalam suhu kamar, sehingga kehadiran air yang cair pada suhu kamar dan tidak bersifat toksik merupakan sifat air yang penting bagi kehidupan, selain itu air tidak dapat dimampatkan.
Air memiliki viskositas yang rendah, sehingga dapat dengan mudah mengalir. Hal ini sangat penting bagi kehidupan, karena dengan demikian air dengan mudah berpindah di dalam tubuh.
semua sifat fisika air di atas membuat air merupakan suatu medium ideal untuk pelaksanaan berbagai proses hidup

D.  Difusi dan Osmosis

  1. Difusi
Difusi adalah pergerakan molekul atau ion dari dengan daerah konsentrasi tinggi ke daerah dengan konsentrasi rendah hal ini disebabkan oleh energi kinetic dari molekul, ion atau atom-atom, dapat dilihat pada gambar berikut:
Difusi terjadi akibat perbedaan konsentrasi, dimana perbedaan konsentrasi ini bisa terjadi bila terjadi perbedaan sejumlah partikel per unit volume dari suatu keadaan ke keadaan lain. Selain karena perbedaan konsentrasi, perbedaan dalam sifat juga dapat menyebabkan difusi, seperti pada gambar berikut, dimana terdapat perbedaan sifat antara gula(padat) dan air
Beberapa contoh difusi yang dapat kita lihat, antara lain:
  1. Apabila kita teteskan minyak wangi dalam botol lalu ditutup, maka bau minyak wangi tersebut akan tersebar ke seluruh bagian botol. Apabila tutup botol dibuka, maka bau minyak wangi tersebut akan tersebar ke seluruh ruangan, meskipun tidak menggunakan kipas. Hal ini disebabkan karena terjadi proses difusi dari botol minyak wangi (konsentrasi tinggi) ke ruangan (konsentrasi rendah).
  2. Apabila kita meneteskan tinta ke dalam segelas air, maka warna tinta tersebut akan menyebar dari tempat tetesan awal (konsentrasi tinggi) ke seluruh air dalam gelas (konsentrasi rendah) sehingga terjadi keseimbangan. Sebenarnya, selain terjadi pergerakan tinta, juga terjadi pergerakan air menuju ke tempat tetesan tinta (dari konsentrasi air tinggi ke konsentrasi air rendah).
Dari contoh diatas, dapat dilihat bahwa arah difusi bebas satu sama lain, tanpa menghalangi satu sama lain sampai mencapai keseimbangan dinamis.
Contoh difusi pada tumbuhan dapat dilihat pada:
Proses pertukaran gas pada tumbuhan yang berlangsung pada daun. Di dalam proses ini gas CO2 dari atsmofer masuk ke dalam rongga antar sel pada mesofil daun, yang selanjutnya digunakan untuk proses fotosintesis. Karena pada siang hari CO2 yang masuk ke daun selalu digunakan untuk fotosintesisi, maka kadar CO2 di dalam rongga antar sel daun akan selalu lebih rendah dari atsmofer, akibatnya pada siang hari akan terjadi aliran difusi gas CO2 dari atsmofer ke daun. Bersamaan dengan itu terjadi pula difusi das O2 dari rongga antar sel daun menuju atsmofir. Hal ini dikarenakan pada proses fotosintesis dihasilkan O2, yang makin lama terakumulasi di dalam rongga antar sel daun, sehingga kadarnya melebihi kada oksigen di atmosfir. Dalam kondisi seperti ini memungkinkan oksigen untuk berdifusi dari daun ke atmosfir.
Pada malam hari terjadi proses difusi yang sebaliknya , karena pada malam hari tidak terjadi proses fotosintesis dan respirasi berjalan terus, maka kandungan CO2 dalam rongga antar sel menjadi meningkat.
Laju difusi tergantung pada suhu dan densitas (kepadatan) medium. Gas berdifusi lebih cepat dibandingkan dengan zat cair, sedangkan zat padat berdifusi lebih lambat dibandingkan dengan zat cair. Molekul berukuran besar lebih lambat pergerakannya dibanding dengan molekul yang lebih kecil.
  1. Osmosis
Osmosis pada dasarnya hampir sama dengan difusi, hanya saja osmosis adalah difusi melalui membran semipermeabel. Dimana molekul-molekul tersebut akan berdifusi dari daerah dengan konsentrasi tinggi ke konsentrasi rendah. Proses Osmosis akan berhenti jika konsentrasi zat di kedua sisi membran tersebut telah mencapai keseimbangan. Pada gambar dibawah ini menggambarkan proses dari osmosis, dimana hanya zat-zat tertentu yang mampu melewati  membrane.
Osmosis dapat dicegah dengan menggunakan tekanan. Oleh karena itu, ahli fisiologi tanaman lebih suka menggunakan istilah potensial osmotik yakni tekanan yang diperlukan untuk mencegah osmosis. Jika anda merendam wortel ke dalam larutan garam 10 % maka sel-selnya akan kehilangan rigiditas (kekakuan)nya. Hal ini disebabkan potensial air dalam sel wortel tersebut lebih tinggi dibanding dengan potensial air pada larutan garam sehingga air dari dalam sel akan keluar ke dalam larutan tersebut. Jika diamati dengan mikroskop maka vakuola sel-sel wortel tersebut tidak tampak dan sitoplasma akan mengkerut dan membran sel akan terlepas dari dindingnya. Peristiwa lepasnya plasma sel dari dinding sel ini disebut plasmolisis.
Osmosis memegang suatu peran yang sangat penting di dalam hidup tumbuhan diantaranya;
-          Penyerapan air oleh tumbuhan dari tanah melalui rambut akar, melalui mekanisme osmotic.
-          Air yang diserap dibagi-bagikan sepanjang seluruh jaringan yang hidup, dilakukan dengan proses osmosis dari sel ke sel.
-          Cahaya merangsang peningkatan osmosis pada sel pengawal, sehingga menyebabkan pengambilan air  ketika stomata membuka
-          Pertumbuhan sel yang muda sampai pemanjangan sel disempurnakan oleh kemampuan osmotic dan tekanan turgor dari  sel.
Masuknya larutan ke dalam sel-sel endodermis merupakan contoh proses osmosis. Dalam tubuh organisme multiseluler, air bergerak dari satu sel ke sel lainnya dengan leluasa. Selain air, molekul-molekul yang berukuran kecil seperti O2 dan CO2 juga mudah melewati membran sel Osmosis juga dapat terjadi dari sitoplasma ke organel-organel bermembran.

E.  Bagaimana Air meninggalkan tumbuhan

Umumnya air yang masuk ke tanah dan tumbuhan akan hilang melalui proses penguapan, dan hanya 2% air yang diserap oleh akar akan dipakai membentuk lebih banyak materi tumbuhan. Pada prinsipnya air akan meninggalkan tumbuhan melalui tiga cara:
a.  Transpiransi, yaitu bagian yang paling utama dari kehilangan air ini. Dalam daun air akan diuapkan dari dinding sel ke ruang antar sel. Dari sini didifusikan ke luar ke udara melalui lubang kecil di daun yang disebut stomata/ mulut daun. Mulut-mulut daun ini akan terbuka pada siang hari dan menutup pada malam hari. Fungsi utamanya adalah memberi kemungkinana untuk erjadinya pertukaran gas antara tumbuhan dengan udara.
b.  Penguapan Kutikula, sebagaian air mungkin menguap melalui kutikula dari daun atau tngkai. Dan hanya sebagian kecil air hilang dengna cara ini, umumnya kurang dari 10% dari total kehilangan air.
c.   Gutasi, di daerah yang lembab kehilangan air akibat penguapan adalah terlalu sulit. Untuk tumbuhan yang hidup pada habitat ini mempunyai lubang pada ujung dari xylem dari daun sebagai adaptasi morfologi dan fisiologi.
Lubang ini dikenal dengan hidatoda, yang memungkinkan air menetes langsung keluar dari daun.
4. Laju Kehilangan Air
Jumlah air yang diperlukan oleh tumbuhan dan konsekuensinya daya toleransi terhadap lingkungan adalah ditentukan utamanya oleh laju kehilangan air, yang harganya tidak saja dipengaruhi oleh kondisi lingkungan tetapi juga oleh keadaan tumbuhan itu sendiri.

1) Kondisi Lingkungan
Faktor-faktor lingkungan seperti suhu, kelembaban udara, dan angin kesemuanya berpesan terhadap laju penguapan dan mempengaruhi jumlah air yang hilang dari tumbuhan.

2) Ukuran dan Struktur Tumbuhan
a)     Ukuran Tumbuhan, umumnya tumbuhan yang besar memerlukan lebih banyak air daripada tumbuhan kecil pohon Quercus misalnya menguapkan 675 L air, sedangkan jagung hanya menguapkan 2,5 L air selama musim panas di daerah temperata.
b) Ukuran Daun, umumnya di daerah lembab yang mempunyai laju penguapan rendah daun-daun menjadi besar untuk mendukung transpirasi, sedangkan daun-daun tumbuhan di daerah kering berukuran kecil-kecil untuk mengurangi penguapan.
c) Jumlah dan Ukuran Stomata, kerapatan dan ukuran stomata sangat berlainan untuk setiap jenis tumbuhan. Transpirasi pada dasarnya akan lebih efisien pada daun dengan ukuran stomata kecil tapi banyak jumlahnya daripada daun dengan stomata besar tapi sedikit jumlahnya. Tumbuhan yang teradaptasi untuk hidup di daerah kering biasanya mempunyai stomata dengan jumlah sedikit, bahkan pada daerah kering ini stomata tumbuhan terbuka pada malam hari dan tertutup pada siang hari dengan tujuan mengurangi kehilangan air akibat transpirasi.

5. Kekurangan dan Kelebihan Air
Di lingkungan daratan dengan situasi kelebihan air maka tanah menjadi jenuh air, permasalahan utama pada situasi seperti ini adalah tidak adanya udara dalam tanah sehingga perakaran tumbuhan tidak bisa bernafas dan juga tanah sering menjadi asam. Jika jumlah air tidak memadai untuk keperluan tumbuhan maka sel menjadi lembek, dan stomata menutup untuk mengurangi kehilangan air berkelanjutan. Kondisi air tanah seperti ini dikenal dengan titik kelayuan, dan sel-sel tumbuhan mulai untuk terjadinya plasmolisis yang biasanya berjalan berkepanjangan. Dan apabila situasi kekurangan air ini menerus maka tumbuhan akan mati. Umumnya tumbuhan yang berada di daerah kering ini berada dalam keadaan setengah dehidrasi pada siang hari yang diimbangi dengan penyimpanan dalam keseimbangan airnya pada malam hari.

6. Efisiensi Transpirasi
Jenis tumbuhan yang berbeda memerlukan jumlah air yang berbeda pula untuk pertumbuhannya. Perbandingan antara produktivitas bersih dengan air yang ditranspirasikan merupakan efisiensi transpirasi dari tumbuhan. Biasanya dinyatakan sebagai berat air yang ditranspirasikan dalam gram untuk menghasilkan 1 gram berat organik kering. Misalnya, efisiensi transpirasi dari gandum adalah 507, tentang 408, dan tanaman di daerah kering 250.

7. Adaptasi Tumbuhan terhadap Kondisi ekstrim
Kekeringan merupakan situasi yang sering dialami oleh tumbuhan, meskipun dipahami bahwa hujan bukanlah satusatunya faktor yang dapat menimbulkan. Suhu yang tinggi bisa juga memberikan pengaruh kekurangan air ini. Bila musim kering itu bersifat periodik dan merupakan karakteristika daerah, maka tumbuhan yang berada di daerah akan memperlihatkan penyesuaian dirinya, berbagai cara penyesuaian ini tergantung pada tumbuhan itu. Umumnya memperlihatkan reduksi dari daun dan dahan, memperpendek siklus hidup atau biji matang pada atau dekat permukaan, rambut akar bertambah banyak, sel kutikula menbal, dinding sel mengandung lebih banyk ikatan kipid, jaringan polisade berkembang lebih baik tetapi sebaliknya dengan bungakarang, sel dan ruang antar sel mengecil tetapi jaringan lignin membesar. Kecepatan fotosintesis, tekanan osmosa dan permeabilitas protoplasma meninggi dan diikuti dengan penurunan viskositas protoplasma, akibatnya perbandingan tepung dan gula menjadi besar, sehingga secara total tumbuhan menjadi tahan terhadap kelayuan.

Berbagai usaha untuk mengatasi kekurangan air atau mengurangi kebutuhan air bagi tumbuhan:

1) Memperbaiki keadaan lingkungan
a)     menambah jumlah, air dengan irigasi atau mengadakan penahanan terhadap bungaan ari.
b)    mengurangi kecepatan evapotranspirasi, dengan cara:
• pengadaan mulsa, menghambat penguapan dari tanah dengan menutupnya oleh dedaunan, ranting, dan lain-lain.
• menahan kecepatan angin dengan pohon pelindung
• melakukan penjarangan
• menyiangi daun dan bagian tumbuhan lainnya
• membuang tumbuhan gulma
• memberi cairan lilin pada daun

2) Menaikkan daya tahan tumbuhan terhadap kekeringan
a) Memilih jenis tumbuhan yang tahan kekeringan
b) Penyilangan dengan tumbuhan tahan kering
c) Pemberi stimulasi tahan kekeringan
d) menjaga kadar N sekecil mungkin tapi memadai
e) mengatur pengairan dengan jarak yang semakin lama, dengan maksud sistem perakaran menembus dengan jauh ke dalam tanah dan supaya terjadi perubahan protoplasma yang dapat menaikkan daya tahan terhadap kekeringan.

8. Pengelompokan Tumbuhan berdasarkan Kadar Air Tanah
Berdasarkan toleransinya terhadap air, terdapat empat kelompok besar, yaitu:
1) Hidrofita, kelopok tumbuhan yang hidupu dalam air atau pada tanah yang tergenag secara permanen.
2) Halofita, kelompok tumbuhan yang terkhususkan tumbuh pada lingkungan berkadar garam tinggi (kekeringan fisiologi).
3) Xerofita, kelompok tumbuhan yang teradaptasi untuk hidup di daerah kering.
4) Mesofita, kelompok tumbuhan yang bertoleransi pada kondisi tanah yang moderat (tidak dalam keadaan ekstrim).
5) Hidrofita, Hidrofita merupakan kelompok tumbuhan yang hdiup sebagian atau seluruhnya di dalam air atau habitat yang basah. Jadi dalam hal ini keadaan air berada dalam kondisi berlebihan, dan tumbuhan yang hidup mempunyai karakteristika yang khusus, seperti terdapatnya jaringan lakuner terutama pada daun dan akar yang berperan dalam memenuhi kebutuhan akan udara sebagai adaptasi terhadap kekurangan oksigen. Berdasarkan karakteristiknya dikenal 5 subkelompok hidrofita, yaitu:
a) Hidrofita Tengelam dan Tertanam pada Substrat
Mempunyai epidermis yang tidak berkutikula, daun dan cabang akar tereduksi dalam ukuran dan ketebalan. Berkembang biak biasanya secara vegetatif. Contoh: Vallisneria dan Elodea.
b) Hidrofita Terapung
Mampu berkembang biak secara cepat sehingga dalam waktu yang singkat dapat menutupi seluruh permukaan perairan. Bila terjadi reproduksi seksual maka penyerbukan terjadi pada atau di atas permukaan. Contoh: Lemna, Eichornia, dan Salvia.
c) Hidrofita Terapung dengan akar tertanam dalam substrat
Mempunyai batang, akar dan tuber yang panjang. Daun sering tertutup oleh lapisan lilin. Contoh: Nymphaea dan Victoria
d) Hidrofita Menjulang, akar tertanam dalam substrat
Akar cepat tumbuh dalam lumpur, daun memperlihatkan variasi yang berbeda, baik bentuk maupun struktur, antara yang mencuat ke udara dengan yang terendam dalam air. Contoh: Acorus dan Typha
e) Hidrofita Melayang
Merupakan fitoplankton, mampu menyerap nutrisi langsung dari air. Contoh: Oscillatoria dan Spirogyra
6) Halofita
Tumbuhan yang hidup dalam kadar garam yang tinggi, mempunyai mekanisme untuk menerima garam yang masuk dalam tubuhnya. Halofita harus mampu mengatasi masalah kekeringan fisiologi. Tingginya konsentrasi garam dalam tanah mungkin menghambat peneyrapan air secara osmosis. Pada rawa pantai halofita berada dalam kekeringan saat surut, dan pengaruh kekurngan air dapat diimbangi dengan penyimpanaan aiar dalam tubuhnya sehingga bentuk halofita ini sering memperlihatkan sifat sukulen. Contoh : Acanthus ilicifolius, dan berbagai tumbuhan di rawa bakau.
7) Xerofita
Merupakan tumbuan yang teradaptasi untuk daerah kering, sangat sedikit jumlahnya dan lebih terkhususkan jika dibandingkan dengan kelompok lainnya. Xerofita ini dapat dikelompokkan dalam dua subkelompok besar, yaitu kelompok yang menghindar terhadap kekeringan (xerofita tidak muirni), dan kelompok yang memikul atau menahan situasi kering (xerofita asli).
8) Penghindar terhadap kekeringan, mencegah kekeringan dengan jalan melakukan adaptasi dalam siklus hidup, morfologi, dan fisiologi.
9) Epemeral, Merupakan umumnya tumbuhan di padang pasir, dengan siklus hidup dan tumbuhan mulai dari biji sampai fasa reproduksi dalam beberapa minggu selama jumlah air memadai/ mencukupi. Biasanya biji dilapisi zat pelindung dan tahan terhadap kekeringan yang akan terlarut pada musim hujan sebelum berkecambah.
10) Sukulenta, Merupakan tumbuhan perenial, menghindar dari kekeringan dengan menyimpan sejumlah air dalam jaringannya dan mereduksi kehilangan air. Air dapat disimpan mungkin di daun seperti pada Agave, di tangkai/ dahan pada Cactaceae dan Euphorbiaceae, atau di batang pada Bombacaceae. Pada semua sukulenta bentuk morfologinya ini mempunyai kemampuan untk mengurangi kehilangan air dari tumbuhan akibat transpirasi stomata dan ruang antar sel sangat sedikit, daun tereduksi dalam ukuran lapisan kutikula yang tebal.
11) Freatofita, Sering dikenal dengan tumbuhan penyedot air, karena laju transpirasinya yang tinggi dan mampu menghindar dari kekeringan karena kemampuannya mencari dan mendapatkan air. Strateginya tidak untuk menjaga air tetapi akar yang sangat panjang yang mampu mencapai lapisan freatik yang dalam dari air tanah, menyerapnya dengan tekanan osmotik yang tinggi dari akarnya.
12) Tahan Kekeringan, Merupakan xerofita sejati, dan biasanya berupa semak yang memperoleh air dari tanah yang relatif kering. Caranya dengan mengadakan tekanan defisit yang cukup tinggi dalam sel-sel daun dan akar. Biasanya juga mengurangi transpirasi dengan membentuk daun

F.  Hubungan Tekanan Turgor dengan stomata

Mekanisme membuka dan menutupnya stomata akibat tekanan Turgor Tekanan turgor adalah tekanan dinding sel oleh isi sel, banyak sedikitnya isi sel berhubungan dengan besar kecilnya tekanan pada dinding sel. Semakin banyak isi sel, semakin besar tekanan dinding sel. Tekanan turgor terbesar terjadi pada pukul 04.00-08.00. Stomata akan membuka jika kedua sel penjaga meningkat. Peningkatan tekanan turgor sel penjaga disebabkan oleh masuknya air kedalam sel penjaga tersebut. Pergerakan air dari satu sel ke sel lainnya akan selalu dari sel yang mempunyai potensi air lebih tinggi ke sel ke potensi air lebih rendah. Tinggi rendahnya potensi air sel akan tergantung pada jumlah bahan yang terlarut (solute) didalam cairan sel tersebut. Semakin banyak bahan yang terlarut maka potensi osmotic sel akan semakin rendah. Dengan demikian, jika tekanan turgor sel tersebut tetap, maka secara keseluruhan potensi air sel akan menurun. Untuk memacu agar air masuk ke sel penjaga, maka jumlah bahan yang terlarut di dalam sel tersebut harus ditingkatkan (Lakitan, 1993).
Skema mekanisme membukanya stomata Cahaya à fotosintesis dalam sel-sel mesophyl à berkurangnya CO2 dalam ruang antar sel à menaikan pH dalam sel penutup à perubahan enzimatik menjadi gula à menaikkan kadar gula à menaikkan tekanan osmotik dari getah sel à menaikkan turgor à stomata membuka (Pandey dan Sinha, 1983). Salisbury dan Ross (1995) menyatakan ada beberapa faktor yang mempengaruhi membuka dan menutupnya stomata yaitu :
1.          Faktor eksternal : Intensitas cahaya matahari, konsentra si CO2 dan asam absisat (ABA). Cahaya matahari merangsang sel penutup menyerap ion K+ dan air, sehingga stomata membuka pada pagi hari. Konsentrasi CO2 yang rendah di dalam daun juga menyebabkan stomata membuka.
2.        Faktor internal (jam biologis) : Jam biologis memicu serapan ion pada pagi hari sehingga stomata membuka, sedangkan malam hari terjadi pembasan ion yang menyebabkan stomata menutup (Haryanti, 2009). Stomata pada tumbuhan berbeda karena perbedaan keadaan letak sel penutup, penyebarannya, bentuk dan letak penebalan dinding sel penutup serta arah membukanya sel penutup, jumlah dan letak sel tetangga pada tumbuhan dikotil dan monokotil, letak sel-sel penutup terhadap permukaan epidermis, dan antogene/asal-usulnya. Stomata akan membuka jika kedua sel penjaga meningkat. Peningkatan tekanan turgor sel penjaga disebabkan oleh masuknya air ke dalam sel penjaga tersebut. Pergerakan air dari satu sel ke sel lainnya akan selalu dari sel yang mempunyai potensi air lebih tinggi ke sel ke potensi air lebih rendah. Tinggi rendahnya potensi air sel akan tergantung pada jumlah bahan yang terlarut (solute) didalam cairan sel tersebut. Semakin banyak bahan yang terlarut maka potensi osmotic sel akan semakin rendah. Dengan demikian, jika tekanan turgor sel tersebut tetap, maka secara keseluruhan potensi air sel akan menurun. Untuk memacu agar air masuk ke sel penjaga, maka jumlah bahan yang terlarut di dalam sel tersebut harus ditingkatkan (Lakitan, 1993).
Aktivitas stomata terjadi karena hubungan air dari sel-sel penutup dan sel-sel pembantu. Bila sel-sel penutup menjadi turgid dinding sel yang tipis menggembung dan dinding sel yang tebal yang mengelilingi lobang (tidak dapat menggembung cukup besar) menjadi sangat cekung, karenanya membuka lobang. Oleh karena itu membuka dan menutupnya stomata tergantung pada perubahan-perubahan turgiditas dari sel-sel penutup, yaitu kalau sel-sel penutup turgid lobang membuka dan sel-sel mengendor pori/lobang menutup (Lakitan, 1993).
Stomata membuka karena sel penjaga mengambil air dan menggembung dimana sel penjaga yang menggembung akan mendorong dinding bagian dalam stomata hingga merapat. Stomata bekerja dengan caranya sendiri karena sifat khusus yang terletak pada anatomi submikroskopik dinding selnya. Sel penjaga dapat bertambah panjang, terutama dinding luarnya, hingga mengembang ke arah luar. Kemudian, dinding sebelah dalam akan tertarik oleh mikrofibril tersebut yang mengakibatkan stomata membuka (Salisbury dan Ross, 1995).
Pada saat stomata membuka akan terjadi akumulasi ion kalium (K+) pada sel penjaga. Ion kalium ini berasal dari sel tetangganya. Cahaya sangat berperan merangsang masuknya ion kalium ke sel penjaga dan jika tumbuhan ditempatkan dalam gelap, maka ion kalium akan kembali keluar sel penjaga (Lakitan, 1993). Stomata tumbuhan pada umumnya membuka pada saat matahari terbit dan menutup saat hari gelap sehingga memungkinkan masuknya CO2 yang diperlukan untuk fotosintesis pada siang hari. Umumnya, proses pembukaan memerlukan waktu 1 jam dan penutupan berlangsung secara bertahap sepanjang sore. Stomata menutup lebih cepat jika tumbuhan ditempatkan dalam gelap secara tiba-tiba.
Terbukanya stomata pada siang hari tidak terhambat jika tumbuhan itu berada dalam udara tanpa karbon dioksida, yaitu keadaan fotosintesis tidak dapat terlaksana (Salisbury dan Ross, 1995).










 


BAB III

PENUTUP

A.  Kesimpulan

1.       Air merupakan bahan yang sangat penting bagi kehidupan, demikian pentingnya sehingga tidak mungkin ada kehidupan tanpa air. Banyak fungsi dalam biologi sepenuhnya bergantung pada air. Dan sifat kehidupan sering secara langsung merupakan hasil dari sifat air.
2.     Fungsi air bagi tumbuhan antara lain sebagai Penyusun utama protoplasma, Menjadi pelarut bagi zat hara yang diperlukan tumbuhan, Menjadi alat transpor untuk memindahkan zat hara, Menjadi medium berlangsungnya reaksi-reaksi biokimia, Menjadi bahan dasar untuk reaksi-reaksi biokimia, Sebagai sistem hidrolik Air, Stabilisasi dan pemindahan panas dan Sebagai alat gerak.

B.  Saran




DAFTAR PUSTAKA